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Abstract. We have investigated the properties of a driven equi-molar binary colloidal mixture confined to a
two-dimensional narrow channel. The walls are hard and periodic boundary condition is applied along the
channel. Colloidal particles perform Brownian motion in a solvent having a fixed temperature and interact
with each other via a Debye-Hückel Coulombic interaction (Yukawa potential). A constant external force
drives the colloids along the channel. Two species move oppositely to each other. Hydrodynamic interactions
are neglected and the dynamics is assumed to be over-damped. The flow increases nonlinearly with the
external force but does not exhibit a notable dependence on channel width. Above a critical driving force
the system undergoes a homogeneous-to-laning transition. It is shown that the mean lane width as well
as the laning order parameter increases with the channel width. The reentrance effect is observed in the
narrow channel geometry.

1 Introduction

Investigations on colloidal suspensions under external
force have exhibited rapid growth and strong diversifica-
tion during the past decades [1–4]. Mesoscopic colloidal
suspensions play a particular role as they can be both
prepared and characterized in a controllable manner. The
effective interaction between colloidal particles can be ad-
justed by changing, e.g., the salt concentration in the sol-
vent. One main motivation to study the influence of ex-
ternal fields is that soft matter reacts sensitively to ex-
ternal perturbations and manipulations. Recent investiga-
tions exploit the intriguing possibility to expose colloids
to external driving fields [1, 5] and to study their non-
equilibrium dynamics in a controlled way. Computer sim-
ulations, and in particular molecular dynamics simulation,
have opened up new strides onto the fascinating problem
of colloids under external force. The simulation results can
be verified directly in experiments and can be exploited
for a systematic search for new material characteristics.
We know from various computer simulations [6–19], the-
ory (dynamical density functional approach) [20] and even
experiments [17,21] that a binary mixture of colloidal sus-
pensions when driven by a constant external field (such
as gravity or an electric field) can exhibit formation of
particles lanes [22, 23]. Each lane contains colloids driven
alike. The phenomenon is quite similar to the lane forma-
tion in pedestrian zones [24], granular systems [25] and
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charge-loaded surface liquid helium [26]. Lane formation
can be regarded as a non-equilibrium phase transition
from a homogeneous mixed state into a non-uniform state
characterised by strip-like patterns of driven alike parti-
cles. Formation of lanes arises as a competition between
external drive and inter-colloidal interaction forces and
appears in three-dimensional model system as well [27].
Due to the existence of the hysteresis effect, the lane for-
mation transition is frequently classified as a first order
one. By now, many important aspects of driven colloidal
systems are extensively studied in bulk. Recently there
has been a growing interest in properties of colloidal sys-
tems, especially the types of ordering, which are under ge-
ometric confinement [28–31]. A prototype of such systems
is a narrow channel which is of great interest in micro-
fluidic applications [32]. The transport behavior of super-
paramagnetic colloids confined in 2D micro-channels has
been investigated both experimentally and by Brownian
dynamics simulations [13,17]. Interesting features such as
layer reduction, emergence of density gradient along the
channel and transverse diffusion have been reported. The
aim of this paper is to shed some further lights onto the
problem of driven colloids in narrow constrictions and to
understand the underlying physics governing these non-
equilibrium processes. In particular, we wish to explore the
generic effect of confinement via hard walls on layering and
transport properties in d = 2 and its interplay with the
drive on the system characteristics. It has been shown that
in equilibrium 2D systems the confining wall can cause
structural transition such as layering transition [33]. Here
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we intend to address how confinement can affect the non-
equilibrium layering phase transition in a driven system.
This paper has the following organisation: In sect. 2 we
describe the model. We provide the simulation details as
well as our simulation results in sect. 3. The paper is con-
cluded in sect. 4.

2 Description of the problem

We consider a binary colloidal mixture comprising N col-
loids of types A and B. Let the number of type A and type
B colloids be NA and NB , respectively, and for simplicity
we assume NA = NB = N

2 unless otherwise stated (N is
even). The point-like colloids are restricted to move in a
two-dimensional rectangular narrow channel cell of sides
Lx and Ly(Lx ≪ Ly). Number density is shown by ρ = N

S
,

where S = LxLy is the channel area. Type number densi-

ties are denoted by ρA = NA

S
and ρB = NB

S
respectively.

Periodic boundary condition is applied along the y direc-
tion. The channel walls which are located at x = 0 and
x = Lx are taken as hard walls [34]. The effective repul-
sive pair potential V (r) between two colloidal particles,
irrespective of their types, at an inter-particle separation
r is modeled by a screened Debye-Hückel Coulombic in-
teraction (Yukawa potential) [35,36]

V (r) = V0σ exp[−κ(r − σ)]/r, (1)

where V0 is an energy scale, σ determines the problem
length scale and κ is the inverse of Debye screening length
which controls the range of interaction and can be tuned
by the concentration of added salt in the colloidal solution.
Naively speaking σ can be considered as the colloids di-
ameter. This is a valid model for charge-stabilized suspen-
sions both in two and three dimensions [37]. The colloids
are suspended in a solvent with a fixed temperature T . Be-
sides the solvent, an external force drives the colloid along
the channel. We take this force to be F

ext,A = FAĵ and
F

ext,B = FB ĵ for types A and B, respectively. For simplic-
ity we consider the symmetric case FA = −FB = F > 0
unless otherwise stated. In other words, the A type col-
loids are driven in the positive direction along the chan-
nel whereas the type B colloids are driven in the nega-
tive direction along the channel. Furthermore, the force
magnitude F is taken as a constant. The dynamics of the
colloids is assumed to be completely over-damped Brow-
nian motion with hydrodynamic interactions mediated by
the solvent flow neglected which is a safe approximation
if the colloidal volume fraction is small. The correspond-
ing stochastic Langevin equation for colloids trajectories
reads as

γ
dri

dt
= −∇�ri

∑

j �=i

V (rij) + F
ext
i + F

(R)
i . (2)

Here the Stokes friction constant γ = 3πησ is assumed to
be the same for both A and B colloids. Note that η is the
shear viscosity of the solvent fluid and rij = |ri − rj |. The

random force F
(R)
i which describes the kicks of the solvent

molecules acting onto the i-th colloidal particle is assumed

to be a Gaussian white noise with zero mean 〈F(R)
i 〉 = 0

and Dirac delta-correlated in time

Fiα(t)Fjβ(t′) = 2kBTγδαβδijδ(t − t′). (3)

The subscripts α and β stand, respectively, for the Carte-
sian components x, y and kBT is the thermal energy. Two
useful dimensionless quantities U0 = V0

kBT
and F ∗ = Fσ

kBT

will be used in the paper.

3 Brownian dynamics computer simulation

We have simulated the motion of colloids according to the
above dynamics in a narrow channel of width Lx. The
channel length Ly is much larger than its width and pe-
riodic boundary condition is implemented along the y di-
rection. In our simulations lengths are measured in units
of σ. The colloidal mass m does not appear in our sim-
ulation due to imposing the over-damped condition in

which the inertial term md2
r

dt2
is neglected. We measure

the time in unit of τB = γσ2/V0. In our code we have
set the friction coefficient γ equal to one as it only affects
the time unit. For discretisation of the Langevin equation,
we have used the Ermak algorithm [38, 39]. For more de-
tails, the reader is referred to [40, 41] and [42, 43]. Our
simulation studies involve the following set of parameters:
N = 800, ∆t = 0.001τB , κσ = 2 and Ly = 80σ. Other
parameters will be mentioned in the text. We typically
run the code for 4 × 105 time steps which equals 400τB .
The first twenty percent of timesteps are for relaxation to-
wards non-equilibrium steady state and afterwards data
are gathered. As for the initial condition, we randomly
distribute the colloids in the channel for each run and
turn off the external force. Then we simulate the motion
for t = 50τB until the system reaches steady state. Af-
ter that we turn on the external force and wait until the
non-equilibrium steady state is established. Figure 1 shows
some snapshots after reaching steady state.

3.1 Flow characteristics

Let us first characterise the dependence of colloidal flow on
system parameters. By flow JA we mean the time-averaged
number of type A colloids which cross a fix location (in
the positive direction) per unit time and per unit length
along the channel width. Similar definition applies to JB

i.e.; the flow of type B colloids. For the symmetric case
NA = NB these two flows should be equal to each other.
According to the continuity and hydrodynamics equations
the flow can be written in terms of the average velocity
i.e.; J = ρ〈v〉 where it is understood that the 〈v〉 is density
dependent. Our Brownian dynamics simulation is unable
to give us the colloidal velocity due to neglecting the iner-

tial terms md2
r

dt2
. However, it would be possible to define

a drift velocity vd along the external field direction as in-
troduced in [6]:

vd = lim
t→∞

√

〈[(r(t) − r(0)) · ŷ]2〉
t

. (4)
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Fig. 1. System snapshots. Top: F ∗ = 25, middle: F ∗ = 75 and
bottom: F ∗ = 100. The parameters are N = 800, Lx = 10σ,
Ly = 80σ, ρσ2 = 1, U0 = 2.5 and κσ = 2.

The average can be over particles and an ensemble of runs.
Figure 2 shows the dependence of J on the drive magni-
tude. As you see the dependence is linear for large F ∗

which is expected. When the driving force is larger than
the other forces the colloids behave like a damped sys-
tem of particles under the influence of a constant force.
In this case the dynamics will no longer be over-damped.
Neglecting the inter-colloidal forces which are of the or-
der V0

σ
and the thermal noise which is of order

√
kBTγ, in

comparison to F the dominant remaining force will be the
frictional force γv. Hence the equation of motion in high
driving limit becomes

m
dv

dt
+ γv = F. (5)

In the steady state we set dvs

dt
= 0 and find vs ∝ F. This

gives rise to an average linear velocity (and hence the flow)
with respect to driving force. The effect is quite similar to
the Drude model for a free electron gas in a solid where the
effect of collisions can be modeled by a frictional damping
term in the equations of motion [44]. Note that when F ∗

is small we have a non-linear flow dependence on F ∗.
According to our simulation results the flow does not

notably depend on the channel width Lx for various values
of the driving force. Figure 3 exhibits the flow dependence
on colloidal dimensionless density ρ∗ = ρσ2. One can ob-
serve that for small densities there is a linear increasing
behaviour up to ρ∗ = 2.5. Afterwards, the flow again in-
creases linearly with density but with a smaller slope. A
qualitative explanation is in order: flow is the number of
colloids times their average velocity. At low densities, flow
increases with density because the number of colloids in-
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Fig. 2. Flow dependence on F ∗. Parameters are N = 800,
Lx = 10σ, Ly = 80σ, ρσ2 = 1, U0 = 2.5, and κσ = 2.
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Fig. 3. Flow dependence on density ρ∗. Other parameters are
N = 800, Lx = 10σ, F ∗ = 80, U0 = 2.5, and κσ = 2.

creases but the average velocity does not show a significant
dependence on density. However, when the number of col-
loids exceeds a threshold, the interaction among them will
be such as to decrease their mean velocity. A further den-
sity increment yields a reduction of the average velocity
and this overally gives rise to a decrease of the flow incre-
ment rate with density in comparison to the low density
regime [45].

3.2 Laning order parameter

To quantify lane formation we need a suitable order pa-
rameter. Such a parameter is not unique. Two choices have
been introduced in the literature [6,14]. Let us first recall
the global laning parameter Φ introduced by Dzubiella et
al. [6]. To each colloid i we assign a binary-valued order
parameter φi. This quantity is one if the lateral distance
|xi−xj | between colloid i and all other colloids j(j �= i) of
different type is larger than a length scale b. Otherwise φi

is set to zero. The length scale b can be density dependent
and was taken to be 1/(2

√
ρ) in [6]. A global dimensionless
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laning order parameter can be defined as follows:

Φ =
1

N

N
∑

i=1

φi, (6)

where the over-line denotes time averaging. In a fully
mixed state, the order parameter Φ becomes zero whereas
in a lane-ordered phase it can be as large as one. In fig. 4
we have shown the dependence of Φ on the dimension-
less force F ∗ for various values of κ. As you see, for small
driving force we have a small Φ. For large enough driv-
ing force the laning parameter Φ approaches unity as ex-
pected. Laning parameter transition from small values to
large ones is quite sharp and we expect it to be first order
in the large system limit. As you can see, the transition
driving force F ∗

c shows a notable dependence on the in-
verse of Debye screening length κ. When κ is increased the
critical F ∗ increases as well. A physical explanation can
be given as follows. When κ is increased the inter-colloidal
Coulombic interaction range decreases. This means that
the colloids motion is more influenced by thermal fluctu-
ations. Therefore, we need a larger force to organise them
into lanes.

Our simulations show that the nature of laning in a
narrow channel is quite different from the case where col-
loids are not spatially restricted. In non-restricted geome-
tries the lanes are normally thin and have a wide range of
width [6] but in our restricted geometry and in the channel
width interval that we investigated only a few lanes are
formed. Typically a single lane forms in the middle where
two other lanes corresponding to the opposite species en-
compass it (see fig. 1). Another typical situation consists
of two lanes (one for each species). See fig. 5.

It is expected that, by increasing the channel width
Lx the single formed lane splits into a number of thin-
ner width lanes. Figure 6 exhibits the dependence of the
mean major lane width on the channel width Lx. As you
can see the larger the channel width the larger the mean
lane width. Unfortunately we could not find any results on
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Fig. 5. System snapshots. Top: F ∗ = 75, bottom: F ∗ = 100.
The parameters are N = 800, Lx = 8σ, Ly = 80σ, ρσ2 = 1,
U0 = 2.5 and κσ = 2.
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the statistics of lanes width in the non-restricted systems
hence we are unable to compare our findings with bulk.

We believe that the nature of wall-particle interaction
can significantly affect the laning behaviour. In fig. 7 we
have sketched the dependence of Φ on the channel width
Lx for various values of the driving force as well as inter-
colloidal interaction constant U0. In the top diagram and
for small driving force, there is a slight increase with re-
spect to channel width. For intermediate F ∗ = 75 we see
an increasing dependence on Lx modulated with weak os-
cillations. When F ∗ is increased to a larger value F ∗ = 100
the dependence on channel width becomes weaker again.
However, the weak oscillatory modulations persist. In the
bottom diagram the dependence of Φ on Lx exhibits a
notable dependence on the strength of inter-colloidal in-
teraction. Weak oscillatory behaviours are yet present.

Figure 8 exhibits how Φ behaves when colloidal density
ρ is varied. For small densities the inter-colloidal repulsive
force, which favours a disordered state, wins the compe-
tition with the driving force therefore the system remains
disordered. When the density reaches a critical value ρc
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parameters are N = 800, ρσ2 = 1.

the driving force manages to overcome the entropic ef-
fects and succeeds in organising the colloids into lanes. For
higher densities the inter-particle forces become dominant
again and destroy the laning order. This is the so-called
reentrance effect introduced in [11]. In fact, a driven bi-
nary mixture of colloids in a narrow channel undergoes
reentrant effect: for a fixed high driving force there is first
a transition towards laning which is followed by a back
transition to the isotropic state having no lane.

We could not find a similar result for the bulk in the
literature hence we are unable to compare our results with
the non-restricted systems. In ref. [11] the dependence of
the critical laning force F ∗

c on the colloidal density is in-
vestigated. Let us next discuss the second laning order
parameter which was introduce by Rex and Löwen [14].
For the sake of completeness, let us redefine this order pa-
rameter. To each colloid i we assign two numbers ni

l(t) and
ni

o(t). The first one denotes the number of its same type
lateral neighbours and the second one shows the number
of its opposite type lateral neighbours at time t. A colloid
j is a lateral neighbour of colloid i provided their lateral
distance |xi − xj | is less than a length zL. In our simu-
lation we set zL = 2σ. Then a local real-valued laning
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Fig. 8. Dependence of Φ on ρ∗. Other parameters: N = 800,
Lx = 10σ, U0 = 2.5, F ∗ = 100 and κσ = 2.

parameters ψi(t) is defines as follows:

ψi(t) =
[ni

l(t) − ni
o(t)]

2

[ni
l(t) + ni

o(t)]
2

. (7)

Eventually the global lane transition order parameter
Ψ is defined as follows [14]:

Ψ =
1

N

N
∑

i=1

ψi, (8)

where the over-line denotes time averaging. The global
order parameter Ψ is practically zero for a homogeneous
mixed configuration, since colloids of different types will
be found inside the neighbouring distance with equal prob-
ability but it gets close to unity if the same colloids are
located in the vicinity of each other, i.e., in a state of lanes.
Figure 9 exhibits the dependence of Ψ on the driving force
F ∗ for various values of κ. As you can see, by increasing
the driving force there is a laning transition. With respect
to the laning order parameter, Ψ shows a smoother be-
haviour when F ∗ is increased. This can be related to the
nature of lanes which are wide.

3.3 Soft interaction with one of the walls

In order to enhance our understanding of the lanes nature,
we have also considered the case where one of the walls
(the wall located at x = 0) exerts and extra force on type
A colloids. Specifically this wall exerts a repulsive force

on A colloids according to the potential Vsoft = U
(w)
0 (σ

r
)3.

Figure 10 shows the dependence of the laning parameter Φ
on the driving force for two values of wall-colloid potential

constant U
(w)
0 . Comparison with the case where no soft

potential exists between the x = 0 wall and A colloids is
also made.

As you can observe, the implementation of this sort
of interaction notably enhances the laning effect. The

larger the potential constant U
(w)
0 the greater the order

parameter.
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4 Concluding remarks

We have simulated a 2D driven binary colloidal mixture
immersed in a host fluid having a fixed temperature with
Brownian dynamics. Hydrodynamic interactions are ne-
glected and over-damped approximation is adopted in the
Langevin equation of motion. Colloidal species interact via
a repulsive screened Coulombic potential (Yukawa poten-
tial) and move oppositely when a constant external force is
exerted to them. The channel walls are assumed to be hard
and the elastic collision rule models the wall-particle inter-
action. The colloidal current increases with external force
but does not show a significant dependence on channel
width. We observe the laning transition above a critical ex-
ternal force. The nature of the formed lanes is quite differ-
ent from the case of non-restricted geometries. The mean
lane width dependence exhibits an increasing behaviour
with channel width modulated by weak variations. By in-
creasing the Debye screening length, the critical external
force decreases. The laning order parameter shows a no-
table dependence on the strength of the Yukawa potential.

Similar to non-restricted geometries, a reentrant effect is
observed. The effect of inclusion of an additional soft re-
pulsive potential between one of the walls and species is
investigated and it is shown that this additional force en-
hances the laning.
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